APPENDIX

Proofs

A.1  Quod Erat Demonstrandum, or What Is a Proof?

Our aim in this Appendix is not to present an essay on the nature of
mathematical proofs. Many of the sections in the text provide a variety of
arguments that can fuel such an essay, but our aim here is simply to present
examples of proofs at various levels of formality and to illustrate the main
techniques, so as to give the reader some help in developing his or her own
proofs.

A proof can be viewed simply as a convincing argument. In casual
conversation, we may challenge someone to “prove” her assertion, be it
that she memorized the Iliad in the original Greek or that she skied a
double-diamond run. The proof presented could be her reciting ex tempore
a sizable passage from the Iliad (assuming we have a copy handy and
can read Greek) or a picture or video of her skiing the run. In political,
economic, or social discussions, we may present a detailed argument in
support of some assertion. For instance a friend may have claimed that a
needle-exchange program reduces both morbidity and medical costs; when
challenged, he would proceed to cite statistics, prior studies, and, on the
basis of his data, construct an argument. More formally, courts of law have
standards of proof that they apply in adjudicating cases, particularly in
criminal law; lawyers speak of “proof beyond a reasonable doubt” (needed
to convict someone of a crime) or “preponderance of evidence” (a lesser
standard used in civil cases).

None of these qualifies as a mathematical proof. A mathematical proof
is intended to establish the truth of a precise, formal statement and is
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typically couched in the same precise, formal language. In 1657, the English
mathematician John Dee wrote:

Probability and sensible proof, may well serve in things naturall
and is commendable: In Mathematicall reasonings, a probably
Argument, is nothing regarded: nor yet the testimony of sens,
any whit credited: But onely a perfect demonstration, of truths
certain, necessary, and invincible: universally and necessarily
concluded is allowed as sufficient for an Argument exactly and
purely Mathematicall.

One of life’s great pleasures for a theoretician is writing the well-earned
“q.e.d.” that marks the end of a proof; it stands for the Latin quod erat
demonstrandum, meaning literally “what was to be proved.”

Our typical vision of a proof is one or more pages of formulae and
text replete with appearances of “therefore,” “hence,” etc. Yet, when two
mathematicians talk about their work, one may present a proof to the
other as a brief sketch of the key ideas involved and both would agree that
the sketch was a proof. In Section 7.1, we present a dozen proofs of NP-
completeness for various classes of complexity in about twenty-five pages:
all of these proofs and many more were given by Richard Karp in 1972
in about three pages. In Section 9.3, we discuss average-case complexity,
for the most part eschewing proofs because of their complexity; yet the
groundwork for the entire theory, including the basic proof of completeness,
was described by Leonid Levin in 1984 in a one-page paper! (Admittedly
this paper set something of a record for conciseness.) At the other extreme,
several recent proofs in mathematics have taken well over a hundred pages,
with at least one requiring nearly five hundred. Faced with one of these
extremely long proofs, the challenge to the reader is to keep in mind all of
the relevant pieces; faced with a one-page foundation for an entire area,
the challenge is to fill in the steps in the (necessarily sketchy) derivations.
Conversely, the challenges to the writers of these proofs were to present the
very long proof in as organized and progressive a manner as possible and
to present the one-page foundation without omitting any of the key ideas.

The main goal of a proof is communication: the proof is written for
other people to read. In consequence, the communication must be tailored
to the audience. A researcher talking to another in the same area may
be able to describe a very complex result in a few minutes; when talking
to a colleague in another area, he may end up lecturing for a few hours.
In consequence, proofs are not completely formal: a certain amount of
“handwaving” (typified by the prefatory words “it is obvious that...”) is
characteristic, because the steps in the proof are tailored to the reader.
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Most mathematicians believe that every proof can be made completely
formal; that is, it can be written down as a succession of elementary
derivation steps from a system of axioms according to a system of rules
of logical inference. Such proofs stand at one extreme of the scale: their
steps are tiny. Of course, writing down any but the most trivial proofs in
this completely formal style would result in extremely long and completely
unintelligible proofs; on the other hand, any such proof could be verified
automatically by a simple program. At the other extreme is the conversation
between two researchers in the same area, where key ideas are barely
sketched—the steps are huge. Thus a proof is not so much a passive object
as a process: the “prover” advances arguments and the “checker” verifies
them. The prover and the checker need to be working at the same level
(to be comfortable with the same size of step) in order for the process
to work. An interesting facet of this process is that the prover and the
checker are often the same person: a proof, or an attempt at one, is often
the theoretician’s most reliable tool and best friend in building new theories
and proposing new assertions. The attempt at proof either establishes the
correctness of the assertion or points out the flaws by “stalling” at some
point in the attempt. By the same token, a proof is also the designer’s best
friend: an attempt at proving the correctness of a design will surely uncover
any remaining flaw.

In consequence, proofs cannot really be absolute; even after a proof
is written, its usefulness depends on the audience. Worse yet, there is no
absolute standard: just because our proof convinced us (or several people)
does not make the proof correct. (Indeed, there have been several examples
of proofs advanced in the last century that turned out to be flawed; perhaps
the most celebrated example is the four-color theorem, which states that
every planar graph can be colored with four colors. The theorem was
known, as a conjecture, for several centuries and received several purported
proofs in the 19th and 20th centuries, until the currently accepted proof—
which fills in omissions of previous proofs, in part through an enormous,
computer-driven, case analysis.) Of course, if every proof were written in
completely formal style, then it could be verified mechanically. But no one
would ever have the patience to write a proof in that style—this entire
textbook would barely be large enough to contain one of its proofs if
written in that style.

Fortunately mathematicians and other scientists have been writing
and reading proofs for a long time and have evolved a certain style of
communication. Most proofs are written in plain text with the help of
formulae but are organized in a fairly rigid manner. The use of language
is also somewhat codified—as in the frequent use of verbs such as “let” or

423



424

Proofs

“follow” and adverbs or conjunctions such as “therefore” or “hence.” The
aim is to keep the flow of a natural language but to structure the argument
and reduce the ambiguity inherent in a natural language so as to make
it possible to believe that the argument could be couched in a completely
formal manner if one so desired (and had the leisure and patience to do it).

A.2 Proof Elements

The beginning for any proof is an assertion—the statement to be proved.
The assertion is often in the form of an implication (if A then B), in which
case we call the antecedent of the implication (A), the hypothesis, and its
consequent (B), the conclusion. Of course, the assertion does not stand
alone but is inspired by a rich context, so that, in addition to the stated
hypothesis, all of the relevant knowledge in the field can be drawn upon.

The proof then proceeds to establish the conclusion by drawing on
the hypothesis and on known results. Progress is made by using rules of
inference. For the most part, only two rules need to be remembered, both
rules with which we are familiar:

e The rule of modus ponens: Given that A is true and given that the
implication A= B is true, conclude that B is true:

AA(A=B)-B

o The rule of (hypothetical) syllogism: Given that the two implications
A= B and B = C are true, conclude that the implication A= C is
also true:

(A=B)AB=C)F(A=C)
For the second rule, we would simply note that implication is a transitive
relation. Most other rules of inference are directly derived from these two

and from basic Boolean algebra (such as de Morgan’s law). For instance,
the rule of modus tollens can be written

AA(B=AF+B

but is easily recognizable as modus ponens by replacing (B= A) by
its equivalent contrapositive (A= B); as another example, the rule of
disjunctive syllogism can be written as

AA(AVB)-B



A.3 Proof Techniques

but is recognizable as another use of modus ponens by remembering that
(X =) is equivalent to (X v Y) and so replacing (A Vv B) by the equivalent
A= B.

A completely formal proof starts from the axioms of the theory. Axioms
were perhaps best described by Thomas Jefferson in another context:
“We hold these truths to be self-evident...” Axioms are independent of
each other (one cannot be proved from the others) and together supply a
sufficient basis for the theory. (A good axiomatization of a theory is an
extremely difficult endeavor.) A formal proof then proceeds by applying
rules of inference to the axioms until the conclusion is obtained. This is not
to say that every proof is just a linear chain of inferences: most proofs build
several lines of derivation that get suitably joined along the way. Of course,
since implication is transitive, there is no need to go back to the axioms for
every new proof: it suffices to start from previously proved results.

A mathematical proof is thus a collection of valid inferences, from
known results and from the hypothesis of the theorem, that together lead
to the conclusion. For convenience, we can distinguish among several
proof structures: constructive proofs build up to the conclusion from the
hypothesis; contradiction proofs use the law of excluded middle (a logic
statement must be either true or false—there is no third choice!) to affirm
the conclusion without deriving it from the hypothesis; induction proofs
use the induction principle at the heart of counting to move from the
particular to the general; and diagonalization proofs combine induction
and contradiction into a very powerful tool. In the following section we
take up each style in turn.

A.3 Proof Techniques

A.3.1 Construction: Linear Thinking

In its simplest form, a proof is simply a mathematical derivation, where each
statement follows from the previous one by application of some elementary
algebraic or logical rule. In many cases, the argument is constructive in the
sense that it builds a structure, the existence of which establishes the truth
of the assertion. A straight-line argument from hypothesis to conclusion
typically falls in this category.

TIndeed, the scholarly name for this law is tertium non datur, Latin for “there is no third.”
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An example of a simple mathematical derivation is a proof that, if n
is an odd integer, then so is n% Because N is an odd integer, we can write
n =2k + 1 for some integer k—we are using the hypothesis. We can then
express N? as (2k + 1)°. Expanding and regrouping (using known facts
about arithmetic, such as associativity, distributivity, and commutativity of
addition and multiplication), we get

NP=2k+1)?=4k>+4k+1=22k> +2k) +1=2m+1

where we have set m= 2k? 4 2k, an integer. Thus n? is itself of the form
2m+ 1 for some integer m and hence is odd, the desired conclusion. We
have constructed n? from an odd number n in such a way as to show
conclusively that n? is itself odd.

Even in strict algebraic derivations, the line may not be unique or
straight. A common occurrence in proofs is a case analysis: we break the
universe of possibilities down into a few subsets and examine each in turn.
As a simple example, consider proving that, if the integer n is not divisible
by 3, then n? must be of the form 3k + 1 for some integer k. If n is not
divisible by 3, then it must be of the form 3m+ 1 or 3m+ 2 for some
integer m. We consider the two cases separately. If n is of the form 3m + 1,
then we can write n? as (3m + 1)2; expanding and regrouping, we get

NP=@m+1)2=9m?>+6m+1=33m>+2m)+1=3+1

where we have set | = 3m? + 2m, an integer. Thus n? is of the desired form
in this case. If, on the other hand, n is the form 3m + 2, then we get

NP =0Bm+2°2?=9m’+ 12m+4=9m°+ 12m+3+1
=38m°+4m+1)+1=3"+1

where we have set I’ =3m? + 4m + 1, an integer. Thus n? is of the desired
form in this second case; overall, then, n? is always of the desired form and
we have completed our proof.

In this text, many of our proofs have to do with sets. In particular, we
often need to prove that two sets, call them Sand T, with apparently quite
different definitions, are in fact equal. In order to prove S=T, we need to
show that every element of S belongs to T (i.e., we need to prove SC T)
and, symmetrically, that every element of T belongs to S (i.e., we need to
prove T C S). Thus a proof of set equality always has two parts. The same
is true of any proof of equivalence (typically denoted by the English phrase
“if and only if”): one part proves the implication in one direction (A if B,
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or, in logic notation, B = A) and the other part proves the implication in
the other direction (A only if B or A= B). When we have to prove the
equivalence of several statements, we prove a circular chain of implications
instead of proving each equivalence in turn: A= B=---=Z = A. By
transitivity, every statement implies every other statement and thus all are
equivalent.

We give just one small example. We prove that the following three
characterizations of a finite tree are equivalent:

1. Ttis an acyclic and connected graph.
2. Tt has one more vertex than edges and is acyclic.
3. It has a unique simple path between any two vertices.

We construct three proofs. First we show that the first characterization
implies the second. Both require the graph to be acyclic; assume then that the
graph is also connected. In order for a graph of n vertices to be connected,
it has to have at least n — 1 edges because every vertex must have at least
one edge connecting it to the rest of the graph. But the graph cannot have
more than n — 1 edges: adding even one more edge to the connected graph,
say from vertex a to vertex b, creates a cycle, since there is already a path
fromato b.

Next we show that the second characterization implies the third. Since
our graph is acyclic, it will have at most one path between any two vertices.
(If there were two distinct simple paths between the same two vertices,
they would form a cycle from the first vertex where they diverge to the
first vertex where they reconverge.) We note that an acyclic graph with
any edges at all must have a vertex of degree 1—if all degrees were higher,
the graph would have at least one cycle. (Vertices of degree 0 clearly do
not affect this statement.) To prove that the graph is connected, we use
induction, which we discuss in detail in a later section. If the graph has
two vertices and one edge, it is clearly connected. Assume then that all
acyclic graphs of n vertices and n — 1 edges, for some n = 1, are connected
and consider an acyclic graph of n + 1 vertices and n edges. This graph
has a vertex of degree 1; if we remove it and its associated edge, the result
is an acyclic graph of n vertices and n — 1 edges, which is connected by
the inductive hypothesis. But then the entire graph is connected, since the
vertex we removed is connected to the rest of the graph by an edge.

Finally, we show that the third characterization implies the first. If there
is a simple path between any two vertices, the graph is connected; if, in
addition, the simple path is always unique, the graph must be acyclic (in
any cycle, there are always two paths between two vertices, going around
the cycle in both directions).
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A.3.2 Contradiction: Reductio ad Absurdum

As we have stated before, many theorems take the form of implications,
i.e., assertions of the form “given A, prove B.” The simplest way to prove
such an assertion is a straight-line proof that establishes the validity of
the implication A= B, since then modus ponens ensures that, given A, B
must also be true. An implication is equivalent to its contrapositive, that
is, A= B is equivalent to B = A. Now suppose that, in addition to our
hypothesis A, we also assume that the conclusion is false, that is, we assume
B. Then, if we can establish the contrapositive, we can use modus ponens
with it and B to obtain A, which, together with our hypothesis A, yields
a contradiction. This is the principle behind a proof by contradiction: it
proceeds “backwards,” from the negated conclusion back to a negated
hypothesis and thus a contradiction. This contradiction shows that the
conclusion cannot be false; by the law of excluded middle, the conclusion
must then be true.

Let us prove that a chessboard of even dimensions (the standard
chessboard is an 8 x 8 grid, but 2n x 2n grids can also be considered) that
is missing its leftmost top square and its rightmost bottom square (the end
squares on the main diagonal) cannot be tiled with dominoes. Assume we
could do it and think of each domino as painted black and white, with one
white square and one black square. The situation is depicted in Figure A.1.
In any tiling, we can always place the dominoes so that their black and white
squares coincide with the black and white squares of the chessboard—any
two adjacent squares on the board have opposite colors. Observe that all
squares on a diagonal bear the same color, so that our chessboard will have
unequal numbers of black and white squares—one of the numbers will
exceed the other by two. However, any tiling by dominoes will have strictly
equal numbers of black and white squares, a contradiction.

.

Figure A.1 An 8 x 8 chessboard with missing opposite corners and a
domino tile.
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Proofs by contradiction are often much easier than direct, straight-
line proofs because the negated conclusion is added to the hypotheses and
thus gives us one more tool in our quest. Moreover, that tool is generally
directly applicable, since it is, by its very nature, intimately connected to
the problem. As an example, let us look at a famous proof by contradiction
known since ancient times: we prove that the square root of 2 is not a
rational number. Let us then assume that it is a rational number; we can
write v/2=a/b, where a and b have no common factor (the fraction is
irreducible). Having formulated the negated conclusion, we can now use
it to good effect. We square both sides to obtain 2b? = a2, from which we
conclude that a% must be even; then a must also be even, because it cannot
be odd (we have just shown that the square of an odd number is itself odd).
Therefore we write a = 2k for some k. Substituting in our first relation, we
obtain 2b% = 4k?, or b? = 2k?, so that b?, and thus also b, must be even.
But then both a and b are even and the fraction a/b is not irreducible,
which contradicts our hypothesis. We conclude that +/2 is not a rational
number. However, the proof has shown us only what +/2 is not—it has
not constructed a clearly irrational representation of the number, such as a
decimal expansion with no repeating period.

Another equally ancient and equally famous result asserts that there
is an infinity of primes. Assume that there exists only a finite number of
primes; denote by n this number and denote these n primes by py, ..., pn.
Now consider the new number m=1+ (p;- p2-...- pPn). By construction,
m is not divisible by any of the p;s. Thus either mitself is prime, or it has a
prime factor other than the pjs. In either case, there exists a prime number
other than the pjs, contradicting our hypothesis. Hence there is an infinity
of prime numbers. Again, we have not shown how to construct a new prime
beyond the collection of n primes already assumed—we have learned only
that such a prime exists. (In this case, however, we have strong clues: the
new number m is itself a new prime, or it has a new prime as one of its
factors; thus turning the existential argument into a constructive one might
not prove too hard.)

A.3.3 Induction: the Domino Principle

In logic, induction means the passage from the particular to the general.
Induction enables us to prove the validity of a general result applicable to a
countably infinite universe of examples. In practice, induction is based on
the natural numbers. In order to show that a statement applies to all n € N,
we prove that it applies to the first natural number—what is called the basis
of the induction—then verify that, if it applies to any natural number, it
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must also apply to the next—what is called the inductive step. The induction
principle then says that the statement must apply to all natural numbers.
The induction principle can be thought of as the domino principle: if you
set up a chain of dominoes, each upright on its edge, in such a way that the
fall of domino i unavoidably causes the fall of domino i + 1, then it suffices
to make the first domino fall to cause the fall of all dominoes. The first
domino is the basis; the inductive step is the placement of the dominoes
that ensures that, if a domino falls, it causes the fall of its successor in the
chain. The step is only a potential: nothing happens until domino i falls. In
terms of logic, the induction step is simply a generic implication: “if P(i)
then P(i 4+ 1)”; since the implication holds for every i, we get a chain of
implications,

3 Pi-1)= PO =P+ =---

equivalent to our chain of dominoes. As in the case of our chain of
dominoes, nothing happens to the chain of implications until some true
statement, P(0), is “fed” to the chain of implications. As soon as we know
that P(0) is true, we can use successive applications of modus ponens to
propagate through the chain of implications:

PO A (PO)= PQ)FPQ)
PO AMPOL=P2)FP®2
P2) A (P(2)= P®@)FP@®)

In our domino analogy, P(i) stands for “domino i falls.”

Induction is used to prove statements that are claimed to be true for an
infinite, yet countable set; every time a statement uses “ ... ” or “and so
on,” you can be sure that induction is what is needed to prove it. Any object
defined recursively will need induction proofs to establish its properties. We
illustrate each application with one example.

Let us prove the equality

124+324+5+...+(@n—12=n4n*-1)/3

The dots in the statement indicate the probable need for induction. Let us
then use it for a proof. The base case is n = 1; in this case, the left-hand
side has the single element 1° and indeed equals the right-hand side. Let
us then assume that the relationship holds for all values of n up to some k
and examine what happens with n =k + 1. The new left-hand side is the
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old left-hand side plus (2(k + 1) — 1) = (2k + 1)%; the old left-hand side
obeys the conditions of the inductive hypothesis and so we can write it as
k(4k? — 1)/3. Hence the new left-hand side is

k(4k? — 1)/3+ (2k 4+ 1) = (4k® — k + 12k? 4+ 12k 4 3)/3
= ((K+ 1)(4K* + 8k + 3))/3
=(k+D@k+1*-1)/3

which proves the step.

The famous Fibonacci numbers are defined recursively with a recursive
step, F(n+ 1) = F(n) + F(n — 1), and with two base cases, F(0) =0 and
F(1) = 1. We want to prove the equality

F2(n+2)— F?(n+1) =FM)F(n+3)

We can easily verify that the equality holds for both n =0 (both sides equal
0) and n = 1 (both sides equal 3). We needed two bases because the recursive
definition uses not just the past step, but the past two steps. Now assume
that the relationship holds for all n up to some k and let us examine the
situation for n =k + 1. We can write

F2(k+3) — F2k+2)
=(FKk+2 +Fk+1)2—F?k+2)
=F2(k+2) + F?(k+ 1)+ 2F(k+2)F(k+ 1) — F2(k + 2)
=F%k+ 1) +2Fkk+2F(k+1)
=Fk+D(Fk+1+2Fk+2)
=FKk+D(Fk+1+FKk+2+Fk+2)
=Fk+1D(F(k+3)+ F(k+2)
=FKk+1DFKk+4

which proves the step.

Do not make the mistake of thinking that, just because a statement
is true for a large number of values of n, it must be true for all n.2 A
famous example (attributed to Leonhard Euler) illustrating this fallacy is

2Since engineers and natural scientists deal with measurements, they are accustomed to errors and are
generally satisfied to see that most measurements fall close to the predicted values. Hence the following
joke about “engineering induction.” An engineer asserted that all odd numbers larger than 1 are prime.
His reasoning went as follows: “3 is prime, 5 is prime, 7 is prime . .. Let’s see, 9 is not prime, but 11 is
prime and 13 is prime; so 9 must be a measurement error and all odd numbers are indeed prime.”

431



432

Proofs

the polynomial n? 4 n + 41: if you evaluate it for n=0, .. ., 39, you will
find that every value thus generated is a prime number! From observing
the first 40 values, it would be very tempting to assert that n? +n + 41
is always a prime; however, evaluating this polynomial for n =40 yields
1681 = 412 (and it is obvious that evaluating it for n = 41 yields a multiple
of 41). Much worse yet is the simple polynomial 991n? + 1. Write a
simple program to evaluate it for a range of nonzero natural numbers and
verify that it never produces a perfect square. Indeed, within the range
of integers that your machine can handle, it cannot produce a perfect
square; however, if you use an unbounded-precision arithmetic package
and spend years of computer time on the project, you may discover that, for
n = 12,055,735,790,331,359,447,442,538,767, the result is a perfect square!
In other words, you could have checked on the order of 10?8 values before
finding a counterexample!

While these examples stress the importance of proving the correctness
of the induction step, the basis is equally important. The basis is the start
of the induction; if it is false, then we should be able to “prove” absurd
statements. A simple example is the following “proof” that every natural
number is equal to its successor. We shall omit the basis and look only at
the step. Assume then that the statement holds for all natural numbers up
to some value k; in particular, we have k =k + 1. Then adding 1 to each
side of the equation yields k + 1 =k + 2 and thus proves the step. Hence, if
our assertion is valid for k, it is also valid for k + 1. Have we proved that
every natural number is equal to its successor (and thus that all natural
numbers are equal)? No, because, in order for the assertion to be valid for
k + 1, it must first be valid for k; in order to be valid for k, it must first
be valid for k — 1; and so forth, down to what should be the basis. But we
have no basis—we have not identified some fixed value kg for which we
can prove the assertion kg = kg + 1. Our dominoes are not falling because,
even though we have set them up so that a fall would propagate, the first
domino stands firm.

Finally, we have to be careful how we make the step. Consider the
following flawed argument. We claim to show that, in any group of two or
more people where at least two people are blond, everyone must be blond.
Our basis is for n = 2: by hypothesis, any group we consider has at least
two blond people in it. Since our group has exactly two people, they are
both blond and we are done. Now assume that the statement holds for
all groups of up to n (n = 2) people and consider a group of n + 1 people.
This group contains at least two blond people, call them John and Mary.
Remove from the group some person other than John and Mary, say Tim.
The remaining group has n people in it, including two blond ones (John
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and Mary), and so it obeys the inductive hypothesis; hence everyone in that
group is blond. The only question concerns Tim; but bring him back and
now remove from the group someone else (still not John or Mary), say
Jane. (We have just shown that Jane must be blond.) Again, by inductive
hypothesis, the remaining group is composed entirely of blond people, so
that Tim is blond and thus every one of the n + 1 people in the group is
blond, completing our “proof” of the inductive step. So what went wrong?
We can look at the flaw in one of two ways. One obvious flaw is that
the argument fails for n + 1 = 3, since we will not find both a Tim and a
Jane and thus will be unable to show that the third person in the group is
blond. The underlying reason is more subtle, but fairly clear in the “proof”
structure: we have used two different successor functions in moving from
a set of size n to a set of size n + 1.

Induction works with natural numbers, but in fact can be used with
any structures that can be linearly ordered, effectively placing them into
one-to-one correspondence with the natural numbers. Let us look at two
simple examples, one in geometry and the other in programming.

Assume you want to tile a kitchen with a square floor of size 2" x 2",
leaving one unit-sized untiled square in the corner for the plumbing. For
decorative reasons (or because they were on sale), you want to use only
L-shaped tiles, each tile covering exactly three unit squares. Figure A.2
illustrates the problem. Can it be done? Clearly, it can be done for a hamster-
sized kitchen of size 2 x 2, since that will take exactly one tile. Thus we
have proved the basis for n = 1. Let us then assume that all kitchens of size
up to 2" x 2" with one unit-size corner square missing can be so tiled and
consider a kitchen of size 2™ x 2", We can mentally divide the kitchen
into four equal parts, each a square of size 2" x 2". Figure A.3(a) illustrates
the result. One of these parts has the plumbing hole for the full kitchen

2n

2n
2

ot s

Figure A.2 The kitchen floor plan and an L-shaped tile.
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(a) the subdivision of the kitchen (b) placing the key tile

Figure A.3 The recursive solution for tiling the kitchen.

and so obeys the inductive hypothesis; hence we can tile it. The other three,
however, have no plumbing hole and must be completely tiled. How do we
find a way to apply the inductive hypothesis? This is typically the crux of
any proof by induction and often requires some ingenuity. Here, we place
one L-shaped tile just outside the corner of the part with the plumbing
hole, so that this tile has one unit-sized square in each of the other three
parts, in fact at a corner of each of the other three parts, as illustrated in
Figure A.3(b). Now what is left to tile in each part meets the inductive
hypothesis and thus can be tiled. We have thus proved that the full original
kitchen (minus its plumbing hole) can be tiled, completing the induction
step. Figure A.4 shows the tilings for the smallest three kitchens. Of course,
the natural numbers figure prominently in this proof—the basis was for
n =1 and the step moved from n to n + 1.

As another example, consider the programming language Lisp. Lisp
is based on atoms and on the list constructor cons and two matching
destructors car and cdr. A list is either an atom or an object built with the
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Figure A.4 Recursive tilings for the smallest three kitchens.
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constructor from other lists. Assume the existence of a Boolean function
I'i st p that tests whether its argument is a list or an atom (returning true
for a list) and define the new constructor append as follows.

(defn append (x vy)

(if (listp x)
(cons (car x) (append (cdr x) y))
y))

Let us prove that the function append is associative; that is, let us prove
the correctness of the assertion

(equal (append (append a b) c)
(append a (append b c)))

We proceed by induction on a. In the base case, a is an atom, so that
(I'i stp a) fails. The first term, (append (append a b) c),becomes
(append b c¢); and the second term, (append a (append b c)),
becomes (append b c); hence the two are equal. Assume then that
the equality holds for all lists involving at most n uses of the constructor
and let us examine the list a defined by (cons a’ a"), where both a’
and a" meet the conditions of the inductive hypothesis. The first term,
(append (append a b) c), can be rewritten as

append (append (cons a a") b) c
Applying the definition of append, we can rewrite this expression as
append (cons a' (append a" b)) c
A second application yields
cons a' (append (append a" b) c)
Now we can use the inductive hypothesis on the sequence of two append
operations to yield
cons a' (append a" (append b c))
The second term, (append a (append b c)), can be rewritten as
append (cons a' a") (append b c)
Applying the definition of append yields
cons a' (append a" (append b c))

which is exactly what we derived from the first term. Hence the first
and second terms are equal and we have proved the inductive step. Here
again, the natural numbers make a fairly obvious appearance, counting the
number of applications of the constructor of the abstract data type.
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Induction is not limited to one process of construction: with several
distinct construction mechanisms, we can still apply induction by verifying
that each construction mechanism obeys the requirement. In such a case,
we still have a basis but now have several steps—one for each constructor.
This approach is critical in proving that abstract data types and other
programming objects obey desired properties, since they often have more
than one constructor.

Induction is very powerful in that it enables us to reduce the proof
of some complex statement to two much smaller endeavors: the basis,
which is often quite trivial, and the step, which benefits immensely from
the inductive hypothesis. Thus rather than having to plot a course from the
hypothesis all the way to the distant conclusion, we have to plot a course
only from step n to step N + 1, a much easier problem. Of course, both the
basis and the step need proofs; there is no reason why these proofs have
to be straight-line proofs, as we have used so far. Either one may use case
analysis, contradiction, or even a nested induction. We give just one simple
example, where the induction step is proved by contradiction using a case

analysis.
We want to prove that, in any subset of n + 1 numbers chosen from the
set {1, 2, ..., 2n}, there must exist a pair of numbers such that one member

of the pair divides the other. The basis, for n =1 is clearly true, since the
set is {1, 2} and we must select both of its elements. Assume then that the
statement holds for all n up to some k and consider the case n =k + 1. We
shall use contradiction: thus we assume that we can find some subset S of
K + 2 elements chosen from the set {1, 2, ..., 2k + 2} such that no element
of Sdivides any other element of S. We shall prove that we can use this set
Sto construct a new set S of k + 1 elements chosen from {1, 2, . . ., 2k} such
that no element of S divides any other element of S, which contradicts the
induction hypothesis and establishes our conclusion, thereby proving the
induction step. We distinguish three cases: (i) S contains neither 2k + 1 nor
2k + 2; (ii) S contains one of these elements but not the other; and (iii) S
contains both 2k + 1 and 2k + 2. In the first case, we remove an arbitrary
element of Sto form S, which thus has k + 1 elements, none larger than
2k, and none dividing any other. In the second case, we remove the one
element of Sthat exceeds 2k to form S, which again will have the desired
properties. The third case is the interesting one: we must remove both 2k + 1
and 2k + 2 from S but must then add some other element (not in S) not
exceeding 2k to obtain an S of the correct size. Since S contains 2k + 2, it
cannot contain k + 1 (otherwise one element, k + 1, would divide another,
2k + 2); we thus add k 4 1 to replace the two elements 2k + 1 and 2k + 2
to form S. It remains to show that no element of S divides any other; the
only candidate pairs are those involving K + 1, since all others were pairs
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in S. The element k + 1 cannot divide any other, since all others are too
small (none exceeds 2k). We claim that no element of S (other than k + 1
itself) divides k 4 1: any such element is also an element of Sand, dividing
k + 1, would also divide 2k + 2 and would form with 2k + 2 a forbidden
pair in S. Thus S has, in all three cases, the desired properties.

A.3.4 Diagonalization: Putting It all Together

Diagonalization was devised by Georg Cantor in his proof that a nonempty
set cannot be placed into a one-to-one correspondence with its power
set. In its most common form, diagonalization is a contradiction proof
based on induction: the inductive part of the proof constructs an element,
the existence of which is the desired contradiction. There is no mystery
to diagonalization: instead, it is simply a matter of putting together the
inductive piece and the contradiction piece. Several simple examples are
given in Sections 2.8 and 2.9. We content ourselves here with giving
a proof of Cantor’s result. Any diagonalization proof uses the implied
correspondence in order to set up an enumeration. In our case, we assume
that a set Scan be placed into one-to-one correspondence with its power
set 25 according to some bijection f. Thus given a set element X, we have
uniquely associated with it a subset of the set, f(x). Now either the subset
f (X) contains X or it does not; we construct a new subset of S using this
information for each X. Specifically, our new subset, call it A, will contain
x if and only if f(X) does not contain X; given a bijection f, our new subset
A is well defined. But we claim that there cannot exist a y in S such that
f(y) equals A. If such a y existed, then we would have f(y)= A and yet,
by construction, y would belong to A if and only if y did not belong to
f(y), a contradiction. Thus the bijection f cannot exist. More precisely,
any mapping from S to 25 cannot be surjective: there must be subsets of
S, such as A, that cannot be associated with any element of S—in other
words, there are “more” subsets of Sthan elements of S.

A.4 How to Write a Proof

Whereas developing a proof for a new theorem is a difficult and unpre-
dictable endeavor, (re)proving a known result is often a matter of routine.
The reason is that the result itself gives us guidance in how to prove it:
whether to use induction, contradiction, both, or neither is often apparent
from the nature of the statement to be proved. Moreover, proving a theo-
rem is a very goal-oriented activity, with a very definite and explicit goal;
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effectively, it is a path-finding problem: among all the derivations we can
create from the hypotheses, which ones will lead us to the desired conclu-
sion? This property stands in contrast to most design activities, where the
target design remains ill-defined until very near the end of the process.

Of course, knowing where to go helps only if we can see a path to it; if
the goal is too distant, path finding becomes difficult. A common problem
that we all experience in attempting to derive a proof is getting lost on
the wrong path, spending hours in fruitless derivations that do not seem
to take us any closer to our goal. Such wanderings are the reason for the
existence of lemmata—signposts in the wilderness. A lemma is intended
as an intermediate result on the way to our main goal. (The word comes
from the Greek and so has a Greek inflection for its plural; the Greek word
reppa denotes what gets peeled, such as the skin of a fruit—we can see
how successive lemmata peel away layers of mathematics to allow us to
reach the core truth.) When faced with an apparently unreachable goal, we
can formulate some intermediate, simpler, and much closer goals and call
them lemmata. Not only will we gain the satisfaction of completing at least
some proofs, but we will also have some advance positions from which to
mount our assault on the final goal. (If these statements are reminiscent
of explorations, military campaigns, or mountaineering expeditions, it is
because these activities indeed resemble the derivation of proofs.) Naturally,
some lemmata end up being more important than the original goal, often
because the goal was very specialized, whereas the lemma provided a
broadly applicable tool.

Once we (believe that we) have a proof, we need to write it down.
The first thing we should do is to write it for ourselves, to verify that
we indeed have a proof. This write-up should thus be fairly formal, most
likely more formal than the write-up we shall use later to communicate to
colleagues; it might also be uneven in its formality, simply because there
will be some points where we need to clarify our own thoughts and others
where we are 100% confident. In the final write-up, however, we should
avoid uneven steps in the derivation—once the complete proof is clear to
us, we should be able to write it down as a smooth flow. We should, of
course, avoid giant steps; in particular, we would do well to minimize the
use of “it is obvious that.”? Yet we do not want to bore the reader with

3 A professor of mathematics was beginning his lecture on the proof of a somewhat tricky theorem. He
wrote a statement on the board and said to the class, “It is obvious that this follows from the hypothesis.”
He then fell silent and stepped back looking somewhat puzzled. For the next forty minutes, he stood
looking at the board, occasionally scratching his head, completely absorbed in his thoughts and ignoring
the students, who fidgeted in their chairs and kept making aborted attempts to leave. Finally, just a few
minutes before the end of the period, the professor smiled, lifted his head, looked at the class, said,
“Yes, it is obvious,” and moved on with the proof.
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unnecessary, pedantic details, at least not after the first few steps. If the
proof is somewhat convoluted, we should not leave it to the reader to
untangle the threads of logic but should prepare a description of the main
ideas and their relationships before plunging into the technical part. In
particular, it is always a good idea to tell the reader if the proof will proceed
by construction, by induction, by contradiction, by diagonalization, or by
some combination. If the proof still looks tangled in spite of these efforts, we
should consider breaking off small portions of it into supporting lemmata;
typically, the more technical (and less enlightening) parts of a derivation
are bundled in this manner into “technical” lemmata, so as to let the main
ideas of the proof stand out. A proof is something that we probably took
a long time to construct; thus it is also something that we should take the
time to write as clearly and elegantly as possible.

We should note, however, that the result is what really matters: any
correct proof at all, no matter how clunky, is welcome when breaking new
ground. Many years often have to pass before the result can be proved
by elegant and concise means. Perhaps the greatest mathematician, and
certainly the greatest discrete mathematician, of the twentieth century, the
Hungarian Paul Erdés (1913-1996), used to refer, only half-jokingly, to
“The Book,” where all great mathematical results—existing and yet to be
discovered—are written with their best proofs. His own work is an eloquent
testimony to the beauty of simple proofs for deep results: many of his proofs
are likely to be found in The Book. As we grope for new results, our first
proof rarely attains the clarity and elegance needed for inclusion into that
lofty volume. However, history has shown that simple proofs often yield
entirely new insights into the result itself and thus lead to new discoveries.

A.5 Practice

In this section we provide just a few examples of simple proofs to put into
practice the precepts listed earlier. We keep the examples to a minimum,
since the reader will find that most of the two hundred exercises in the main
part of the text also ask for proofs.

Exercise A.1 (construction) Verify the correctness of the formula
(1-—X)2=1+2x+3x*+...

Exercise A.2 (construction) Prove that, for every natural number n, there
exists a natural number m with at least n distinct divisors.

Exercise A.3 (construction and case analysis) Verify the correctness of the
formula min(x, y) + max(x, y) = X + Y for any two real numbers X and y.
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Exercise A.4 (contradiction) Prove that, if n is prime and not equal to 2,
then n is odd.

Exercise A.5 (contradiction) Prove that /N is irrational for any natural
number n that is not a perfect square.

Exercise A.6 (induction) Prove that, if n is larger than 1, then n? is larger
than n.

Exercise A.7 (induction) Verify the correctness of the formula
n
Y i=1nin+1)

i=1

Exercise A.8 (induction) Prove that 22" — 1is divisible by 3 for any natural
number n.

Exercise A.9 (induction) Verify that the nth Fibonacci number can be
described in closed form by

w3l

(This exercise requires some patience with algebraic manipulations.)




